Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Nat Commun ; 15(1): 3529, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664415

The feedback projections from cortical layer 6 (L6CT) to the sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventral posteromedial nucleus of the thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.


Optogenetics , Somatosensory Cortex , Thalamus , Vibrissae , Wakefulness , Animals , Wakefulness/physiology , Somatosensory Cortex/physiology , Mice , Thalamus/physiology , Vibrissae/physiology , Neurons/physiology , Male , Neural Pathways/physiology , Ventral Thalamic Nuclei/physiology , Action Potentials/physiology , Female , Mice, Inbred C57BL
2.
bioRxiv ; 2024 Feb 07.
Article En | MEDLINE | ID: mdl-37503253

The feedback projections from cortical layer 6 (L6CT) to sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventro-posterior-medial nucleus of thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.

3.
Neuron ; 110(17): 2836-2853.e8, 2022 09 07.
Article En | MEDLINE | ID: mdl-35803270

The thalamus controls transmission of sensory signals from periphery to cortex, ultimately shaping perception. Despite this significant role, dynamic thalamic gating and the consequences for downstream cortical sensory representations have not been well studied in the awake brain. We optogenetically modulated the ventro-posterior-medial thalamus in the vibrissa pathway of the awake mouse and measured spiking activity in the thalamus and activity in primary somatosensory cortex (S1) using extracellular electrophysiology and genetically encoded voltage imaging. Thalamic hyperpolarization significantly enhanced thalamic sensory-evoked bursting; however, surprisingly, the S1 cortical response was not amplified, but instead, timing precision was significantly increased, spatial activation more focused, and there was an increased synchronization of cortical inhibitory neurons. A thalamocortical network model implicates the modulation of precise timing of feedforward thalamic population spiking, presenting a highly sensitive, timing-based gating of sensory signaling to the cortex.


Somatosensory Cortex , Wakefulness , Animals , Mice , Neurons/physiology , Signal Transduction , Somatosensory Cortex/physiology , Thalamus/physiology
4.
J Neurosci ; 41(25): 5421-5439, 2021 06 23.
Article En | MEDLINE | ID: mdl-33986072

Rapid sensory adaptation is observed across all sensory systems, and strongly shapes sensory percepts in complex sensory environments. Yet despite its ubiquity and likely necessity for survival, the mechanistic basis is poorly understood. A wide range of primarily in vitro and anesthetized studies have demonstrated the emergence of adaptation at the level of primary sensory cortex, with only modest signatures in earlier stages of processing. The nature of rapid adaptation and how it shapes sensory representations during wakefulness, and thus the potential role in perceptual adaptation, is underexplored, as are the mechanisms that underlie this phenomenon. To address these knowledge gaps, we recorded spiking activity in primary somatosensory cortex (S1) and the upstream ventral posteromedial (VPm) thalamic nucleus in the vibrissa pathway of awake male and female mice, and quantified responses to whisker stimuli delivered in isolation and embedded in an adapting sensory background. We found that cortical sensory responses were indeed adapted by persistent sensory stimulation; putative excitatory neurons were profoundly adapted, and inhibitory neurons only modestly so. Further optogenetic manipulation experiments and network modeling suggest this largely reflects adaptive changes in synchronous thalamic firing combined with robust engagement of feedforward inhibition, with little contribution from synaptic depression. Taken together, these results suggest that cortical adaptation in the regime explored here results from changes in the timing of thalamic input, and the way in which this differentially impacts cortical excitation and feedforward inhibition, pointing to a prominent role of thalamic gating in rapid adaptation of primary sensory cortex.SIGNIFICANCE STATEMENT Rapid adaptation of sensory activity strongly shapes representations of sensory inputs across all sensory pathways over the timescale of seconds, and has profound effects on sensory perception. Despite its ubiquity and theoretical role in the efficient encoding of complex sensory environments, the mechanistic basis is poorly understood, particularly during wakefulness. In this study in the vibrissa pathway of awake mice, we show that cortical representations of sensory inputs are strongly shaped by rapid adaptation, and that this is mediated primarily by adaptive gating of the thalamic inputs to primary sensory cortex and the differential way in which these inputs engage cortical subpopulations of neurons.


Adaptation, Physiological/physiology , Somatosensory Cortex/physiology , Thalamus/physiology , Wakefulness/physiology , Animals , Female , Male , Mice , Vibrissae/physiology
5.
J Neurosci Methods ; 348: 109008, 2021 01 15.
Article En | MEDLINE | ID: mdl-33242530

BACKGROUND: Whole-cell patch-clamp recording in vivo is the gold-standard method for measuring subthreshold electrophysiology from single cells during behavioural tasks, sensory stimulations, and optogenetic manipulation. However, these recordings require a tight, gigaohm resistance, seal between a glass pipette electrode's aperture and a cell's membrane. These seals are difficult to form, especially in vivo, in part because of a strong dependence on the distance between the pipette aperture and cell membrane. NEW METHOD: We elucidate and utilize this dependency to develop an autonomous method for placement and synchronization of pipette's tip aperture to the membrane of a nearby, moving neuron, which enables high-yield seal formation and subsequent recordings deep in the brain of the living mouse. RESULTS: This synchronization procedure nearly doubles the reported gigaseal yield in the thalamus (>3 mm below the pial surface) from 26 % (n = 17/64) to 48 % (n = 32/66). Whole-cell recording yield improved from 10 % (n = 9/88) to 24 % (n = 18/76) when motion compensation was used during the gigaseal formation. As an example of its application, we utilized this system to investigate the role of the sensory environment and ventral posterior medial region (VPM) projection synchrony on intracellular dynamics in the barrel cortex. COMPARISON WITH EXISTING METHOD(S): Current methods of in vivo whole-cell patch clamping do not synchronize the position of the pipette to motion of the cell. CONCLUSIONS: This method results in substantially greater subcortical whole-cell recording yield than previously reported and thus makes pan-brain whole-cell electrophysiology practical in the living mouse brain.


Electrophysiological Phenomena , Neurons , Animals , Brain , Cell Membrane , Mice , Patch-Clamp Techniques
6.
Vis Neurosci ; 36: E012, 2019 12 16.
Article En | MEDLINE | ID: mdl-31840629

The trial-to-trial response variability in sensory cortices and the extent to which this variability can be coordinated among cortical units have strong implications for cortical signal processing. Yet, little is known about the relative contributions and dynamics of defined sources to the cortical response variability and their correlations across cortical units. To fill this knowledge gap, here we obtained and analyzed multisite local field potential (LFP) recordings from visual cortex of turtles in response to repeated naturalistic movie clips and decomposed cortical across-trial LFP response variability into three defined sources, namely, input, network, and local fluctuations. We found that input fluctuations dominate cortical response variability immediately following stimulus onset, whereas network fluctuations dominate the response variability in the steady state during continued visual stimulation. Concurrently, we found that the network fluctuations dominate the correlations of the variability during the ongoing and steady-state epochs, but not immediately following stimulus onset. Furthermore, simulations of various model networks indicated that (i) synaptic time constants, leading to oscillatory activity, and (ii) synaptic clustering and synaptic depression, leading to spatially constrained pockets of coherent activity, are both essential features of cortical circuits to mediate the observed relative contributions and dynamics of input, network, and local fluctuations to the cortical LFP response variability and their correlations across recording sites. In conclusion, these results show how a mélange of multiscale thalamocortical circuit features mediate a complex stimulus-modulated cortical activity that, when naively related to the visual stimulus alone, appears disguised as high and coordinated across-trial response variability.


Evoked Potentials, Visual/physiology , Nerve Net/physiology , Photic Stimulation , Visual Cortex/physiology , Visual Perception/physiology , Animals , Turtles
7.
J Neurosci ; 39(24): 4738-4759, 2019 06 12.
Article En | MEDLINE | ID: mdl-30952810

What information single neurons receive about general neural circuit activity is a fundamental question for neuroscience. Somatic membrane potential (Vm) fluctuations are driven by the convergence of synaptic inputs from a diverse cross-section of upstream neurons. Furthermore, neural activity is often scale-free, implying that some measurements should be the same, whether taken at large or small scales. Together, convergence and scale-freeness support the hypothesis that single Vm recordings carry useful information about high-dimensional cortical activity. Conveniently, the theory of "critical branching networks" (one purported explanation for scale-freeness) provides testable predictions about scale-free measurements that are readily applied to Vm fluctuations. To investigate, we obtained whole-cell current-clamp recordings of pyramidal neurons in visual cortex of turtles with unknown genders. We isolated fluctuations in Vm below the firing threshold and analyzed them by adapting the definition of "neuronal avalanches" (i.e., spurts of population spiking). The Vm fluctuations which we analyzed were scale-free and consistent with critical branching. These findings recapitulated results from large-scale cortical population data obtained separately in complementary experiments using microelectrode arrays described previously (Shew et al., 2015). Simultaneously recorded single-unit local field potential did not provide a good match, demonstrating the specific utility of Vm Modeling shows that estimation of dynamical network properties from neuronal inputs is most accurate when networks are structured as critical branching networks. In conclusion, these findings extend evidence of critical phenomena while also establishing subthreshold pyramidal neuron Vm fluctuations as an informative gauge of high-dimensional cortical population activity.SIGNIFICANCE STATEMENT The relationship between membrane potential (Vm) dynamics of single neurons and population dynamics is indispensable to understanding cortical circuits. Just as important to the biophysics of computation are emergent properties such as scale-freeness, where critical branching networks offer insight. This report makes progress on both fronts by comparing statistics from single-neuron whole-cell recordings with population statistics obtained with microelectrode arrays. Not only are fluctuations of somatic Vm scale-free, they match fluctuations of population activity. Thus, our results demonstrate appropriation of the brain's own subsampling method (convergence of synaptic inputs) while extending the range of fundamental evidence for critical phenomena in neural systems from the previously observed mesoscale (fMRI, LFP, population spiking) to the microscale, namely, Vm fluctuations.


Membrane Potentials/physiology , Nerve Net/physiology , Turtles/physiology , Algorithms , Animals , Electrophysiological Phenomena/physiology , Microelectrodes , Models, Neurological , Nerve Net/cytology , Neurons/physiology , Patch-Clamp Techniques , Pyramidal Cells/physiology , Single-Cell Analysis , Visual Cortex/cytology , Visual Cortex/physiology
8.
Article En | MEDLINE | ID: mdl-29094198

The three-layered visual cortex of turtle is characterized by extensive intracortical axonal projections and receives non-retinotopic axonal projections from lateral geniculate nucleus. What spatiotemporal transformation of visual stimuli into cortical activity arises from such tangle of malleable cortical inputs and intracortical connections? To address this question, we obtained band-pass filtered extracellular recordings of neural activity in turtle dorsal cortex during visual stimulation of the retina. We discovered important spatial and temporal features of stimulus-modulated cortical local field potential (LFP) recordings. Spatial receptive fields span large areas of the visual field, have an intricate internal structure, and lack directional tuning. The receptive field structure varies across recording sites in a distant-dependent manner. Such composite spatial organization of stimulus-modulated cortical activity is accompanied by an equally multifaceted temporal organization. Cortical visual responses are delayed, persistent, and oscillatory. Further, prior cortical activity contributes globally to adaptation in turtle visual cortex. In conclusion, these results demonstrate convoluted spatiotemporal transformations of visual stimuli into stimulus-modulated cortical activity that, at present, largely evade computational frameworks.


Turtles/physiology , Vision, Ocular/physiology , Visual Cortex/physiology , Adaptation, Physiological/physiology , Animals , Microelectrodes , Photic Stimulation , Retina/physiology , Spatio-Temporal Analysis , Visual Pathways/physiology , Wavelet Analysis
9.
J Neurophysiol ; 118(6): 3345-3359, 2017 12 01.
Article En | MEDLINE | ID: mdl-28931610

Cortical activity contributes significantly to the high variability of sensory responses of interconnected pyramidal neurons, which has crucial implications for sensory coding. Yet, largely because of technical limitations of in vivo intracellular recordings, the coupling of a pyramidal neuron's synaptic inputs to the local cortical activity has evaded full understanding. Here we obtained excitatory synaptic conductance ( g) measurements from putative pyramidal neurons and local field potential (LFP) recordings from adjacent cortical circuits during visual processing in the turtle whole brain ex vivo preparation. We found a range of g-LFP coupling across neurons. Importantly, for a given neuron, g-LFP coupling increased at stimulus onset and then relaxed toward intermediate values during continued visual stimulation. A model network with clustered connectivity and synaptic depression reproduced both the diversity and the dynamics of g-LFP coupling. In conclusion, these results establish a rich dependence of single-neuron responses on anatomical, synaptic, and emergent network properties. NEW & NOTEWORTHY Cortical neurons are strongly influenced by the networks in which they are embedded. To understand sensory processing, we must identify the nature of this influence and its underlying mechanisms. Here we investigate synaptic inputs to cortical neurons, and the nearby local field potential, during visual processing. We find a range of neuron-to-network coupling across cortical neurons. This coupling is dynamically modulated during visual processing via biophysical and emergent network properties.


Adaptation, Physiological , Neurons/physiology , Synaptic Potentials , Visual Cortex/physiology , Animals , Models, Neurological , Neural Pathways/physiology , Photic Stimulation , Turtles , Visual Perception/physiology
10.
J Neurophysiol ; 118(4): 2142-2155, 2017 10 01.
Article En | MEDLINE | ID: mdl-28747466

A primary goal of systems neuroscience is to understand cortical function, typically by studying spontaneous and stimulus-modulated cortical activity. Mounting evidence suggests a strong and complex relationship exists between the ongoing and stimulus-modulated cortical state. To date, most work in this area has been based on spiking in populations of neurons. While advantageous in many respects, this approach is limited in scope: it records the activity of a minority of neurons and gives no direct indication of the underlying subthreshold dynamics. Membrane potential recordings can fill these gaps in our understanding, but stable recordings are difficult to obtain in vivo. Here, we recorded subthreshold cortical visual responses in the ex vivo turtle eye-attached whole brain preparation, which is ideally suited for such a study. We found that, in the absence of visual stimulation, the network was "synchronous"; neurons displayed network-mediated transitions between hyperpolarized (Down) and depolarized (Up) membrane potential states. The prevalence of these slow-wave transitions varied across turtles and recording sessions. Visual stimulation evoked similar Up states, which were on average larger and less reliable when the ongoing state was more synchronous. Responses were muted when immediately preceded by large, spontaneous Up states. Evoked spiking was sparse, highly variable across trials, and mediated by concerted synaptic inputs that were, in general, only very weakly correlated with inputs to nearby neurons. Together, these results highlight the multiplexed influence of the cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons.NEW & NOTEWORTHY Most studies of cortical activity focus on spikes. Subthreshold membrane potential recordings can provide complementary insight, but stable recordings are difficult to obtain in vivo. Here, we recorded the membrane potentials of cortical neurons during ongoing and visually evoked activity. We observed a strong relationship between network and single-neuron evoked activity spanning multiple temporal scales. The membrane potential perspective of cortical dynamics thus highlights the influence of intrinsic network properties on visual processing.


Evoked Potentials, Visual , Pyramidal Cells/physiology , Visual Cortex/physiology , Animals , Sensory Thresholds , Turtles , Visual Cortex/cytology
11.
J Neurophysiol ; 118(2): 1257-1269, 2017 08 01.
Article En | MEDLINE | ID: mdl-28592686

Cortical sensory responses are highly variable across stimulus presentations. This variability can be correlated across neurons (due to some combination of dense intracortical connectivity, cortical activity level, and cortical state), with fundamental implications for population coding. Yet the interpretation of correlated response variability (or "noise correlation") has remained fraught with difficulty, in part because of the restriction to extracellular neuronal spike recordings. Here, we measured response variability and its correlation at the most microscopic level of electrical neural activity, the membrane potential, by obtaining dual whole cell recordings from pairs of cortical pyramidal neurons during visual processing in the turtle whole brain ex vivo preparation. We found that during visual stimulation, correlated variability adapts toward an intermediate level and that this correlation dynamic is likely mediated by intracortical mechanisms. A model network with external inputs, synaptic depression, and structure reproduced the observed dynamics of correlated variability. These results suggest that intracortical adaptation self-organizes cortical circuits toward a balanced regime at which correlated variability is maintained at an intermediate level.NEW & NOTEWORTHY Correlated response variability has profound implications for stimulus encoding, yet our understanding of this phenomenon is based largely on spike data. Here, we investigate the dynamics and mechanisms of membrane potential-correlated variability (CC) in visual cortex with a combined experimental and computational approach. We observe a visually evoked increase in CC, followed by a fast return to baseline. Our results further suggest a link between this observation and the adaptation-mediated dynamics of emergent network phenomena.


Adaptation, Physiological/physiology , Adaptation, Psychological/physiology , Membrane Potentials/physiology , Pyramidal Cells/physiology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Models, Neurological , Patch-Clamp Techniques , Photic Stimulation , Synapses/physiology , Tissue Culture Techniques , Turtles
12.
PLoS Comput Biol ; 13(5): e1005574, 2017 05.
Article En | MEDLINE | ID: mdl-28557985

Fundamental to the function of nervous systems is the ability to reorganize to cope with changing sensory input. Although well-studied in single neurons, how such adaptive versatility manifests in the collective population dynamics and function of cerebral cortex remains unknown. Here we measured population neural activity with microelectrode arrays in turtle visual cortex while visually stimulating the retina. First, we found that, following the onset of stimulation, adaptation tunes the collective population dynamics towards a special regime with scale-free spatiotemporal activity, after an initial large-scale transient response. Concurrently, we observed an adaptive tradeoff between two important aspects of population coding-sensory detection and discrimination. As adaptation tuned the cortex toward scale-free dynamics, stimulus discrimination was enhanced, while stimulus detection was reduced. Finally, we used a network-level computational model to show that short-term synaptic depression was sufficient to mechanistically explain our experimental results. In the model, scale-free dynamics emerge only when the model operates near a special regime called criticality. Together our model and experimental results suggest unanticipated functional benefits and costs of adaptation near criticality in visual cortex.


Adaptation, Physiological/physiology , Models, Neurological , Neural Pathways/physiology , Neurons/physiology , Visual Cortex/physiology , Animals , Retina/physiology , Turtles
...